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Abstract. Dynamical chiral symmetry breaking (DCSB) is a remarkably effective mass generating
mechanism. It is also, amongst other things, the foundation for a successful application of chiral
effective field theories, the origin of constituent-quark masses, and intimately connected with
confinement in QCD. Using the Dyson-Schwinger equations (DSEs), we explain the origin and
nature of DCSB, and elucidate some of its consequences, e.g.: a model-independent result for
the pion susceptibility; the generation of a quark anomalous chromomagnetic moment, which
may explain the longstanding puzzle of the a1-ρ mass splitting; its impact on the behaviour of
the electromagnetic pion form factor – thereby illustrating how data can be used to chart the
momentum-dependence of the dressed-quark mass function; in the form of the pion and kaon
valence-quark parton distribution functions, and the relation between them; and aspects of the
neutron’s electromagnetic form factors, in particular Fu

1 /Fd
1 and Gn

M . We argue that in solving QCD,
a constructive feedback between theory and extant and forthcoming experiments will most rapidly
enable constraints to be placed on the infrared behaviour of QCD’s β -function, the nonperturbative
quantity at the core of hadron physics; and emphasise throughout the role played by confrontation
with data as a means of verifying our understanding of Nature.
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1. INTRODUCTION

A hundred years and more of fundamental research in atomic and nuclear physics has
shown us that all matter is corpuscular, with the atoms that comprise us, themselves
containing a dense nuclear core. This core is composed of protons and neutrons, referred
to collectively as nucleons, which are members of a broader class of femtometre-scale
particles, called hadrons. In working toward an understanding of hadrons, we have
discovered that they are complicated bound-states of quarks and gluons, which are
elementary and pointlike excitations whose interactions are described by a Poincaré
invariant quantum non-Abelian gauge field theory; namely, quantum chromodynamics
(QCD). The goal of hadron physics is the provision of a quantitative explanation of the
properties of hadrons through a solution of QCD.

Quantum chromodynamics is the strong-interaction part of the Standard Model of
Particle Physics and solving QCD presents a fundamental problem that is unique in the
history of science. Never before have we been confronted by a theory whose elementary
excitations are not those degrees-of-freedom readily accessible via experiment; i.e.,
whose elementary excitations are confined. Moreover, we have numerous reasons to
believe that QCD generates forces which are so strong that less-than 2% of a nucleon’s
mass can be attributed to the so-called current-quark masses that appear in the QCD



Lagrangian; viz., forces that generate mass from almost nothing, a phenomenon known
as dynamical chiral symmetry breaking (DCSB).

Neither confinement nor DCSB is apparent in QCD’s Lagrangian and yet they play
the dominant role in determining the observable characteristics of real-world QCD. The
physics of hadrons is ruled by emergent phenomena, such as these, which can only be
elucidated through the employment of nonperturbative methods in quantum field theory.
This is both the greatest novelty and the greatest challenge within the Standard Model.
We must find essentially new ways and means to explain precisely via mathematics the
observable content of QCD.

This contribution to these Proceedings provides an introduction to hadron physics and
a review of selected recent progress in this field made using QCD’s Dyson-Schwinger
equations (DSEs). The complex of DSEs is a powerful tool, which has been employed
with marked success to study confinement and DCSB, and their impact on hadron
observables. This is apparent from the detailed background material that is available
in Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and will be exemplified herein.

2. HADRON PHYSICS – SOME KEY POINTS

The basic problem of hadron physics is to solve QCD. This inspiring goal will only be
achieved through a joint effort from experiment and theory. The hadron physics com-
munity now has a range of major facilities that are accumulating data, of unprecedented
accuracy and precision, which pose important challenges for theory. Notable amongst
these facilities is the Thomas Jefferson National Accelerator Facility (JLab) in Newport
News, Virginia. The interpretation and prediction of phenomena at JLab provide the
themes for much of the material presented herein. In hadron physics, it is the feedback
between experiment and theory that leads most rapidly to progress in understanding.
The opportunities for researchers in hadron physics promise to grow because upgraded
and new facilities will appear on a five-to-ten-year time-scale [12, 13, 14, 15].

Asymptotic coloured states have not been observed, but is it a cardinal fact that
they cannot? No solution to QCD will be complete if it does not explain confinement.
This means confinement in the real world, which contains quarks with light current-
quark masses. This is distinct from the artificial universe of pure-gauge QCD without
dynamical quarks, studies of which tend merely to focus on achieving an area law for a
Wilson loop and hence are irrelevant to the question of light-quark confinement.

In stepping toward an answer to the question of confinement, it will likely be nec-
essary to map out the long-range behaviour of the interaction between light-quarks;
namely, QCD’s β -function at infrared momenta. In this connection we note that the
spectrum of meson and baryon excited states, and hadron elastic and transition form fac-
tors provide unique information about the long-range interaction between light-quarks
and, in addition, the distribution of a hadron’s characterising properties – such as mass
and momentum, linear and angular – amongst its QCD constituents. The upgraded and
promised future facilities will provide data that should guide the charting process. How-
ever, to make full use of that data, it will be necessary to have Poincaré covariant theoret-
ical tools that enable the reliable study of hadrons in the mass range 1-2GeV. Crucially,
on this domain both confinement and DCSB are germane.
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FIGURE 1. Dressed-quark mass function, M(p) in Eq. (5): solid curves – DSE results, obtained as
explained in [17, 18], “data” – numerical simulations of lattice-QCD [19]. (NB. m = 70MeV is the
uppermost curve and current-quark mass decreases from top to bottom.) One observes the current-quark of
perturbative QCD evolving into a constituent-quark as its momentum becomes smaller. The constituent-
quark mass arises from a cloud of low-momentum gluons attaching themselves to the current-quark. This
is dynamical chiral symmetry breaking (DCSB): an essentially nonperturbative effect that generates a
quark mass from nothing; namely, it occurs even in the chiral limit. (Figure adapted from Ref. [16].)

It is known that DCSB; namely, the generation of mass from nothing, does take place
in QCD. It arises primarily because a dense cloud of gluons comes to clothe a low-
momentum quark [16]. This is best seen by solving the DSE for the dressed-quark
propagator; i.e., the gap equation, which yields the result illustrated in Fig. 1. However,
the origin of the interaction strength at infrared momenta, which guarantees DCSB
through the gap equation, is currently unknown. This relationship ties confinement to
DCSB. The reality of DCSB means that the Higgs mechanism is largely irrelevant to the
bulk of normal matter in the universe. Instead the single most important mass generating
mechanism for light-quark hadrons is the strong interaction effect of DCSB; e.g., one
can identify it as being responsible for 98% of a proton’s mass.

It is natural to ask whether the connection between confinement and DCSB is acci-
dental or causal. There are models with DCSB but not confinement, however, a model
with confinement but lacking DCSB has not yet been identified (see, e.g., Secs. 2.1 and
2.2 of Ref. [8]). This leads to a conjecture that DCSB is a necessary consequence of
confinement. It is interesting that there are numerous models and theories which ex-
hibit both confinement and DCSB, and possess an external control parameter such that
deconfinement and chiral symmetry restoration occur simultaneously at some critical
value of this parameter; e.g., quantum electrodynamics in three dimensions with N f
electrons [20, 21], and models of QCD at nonzero temperature and chemical potential
[22, 23, 24, 25, 26]. Whether this simultaneity is a property possessed by QCD, and/or
some broader class of theories, in response to changes in: the number of light-quark
flavours; temperature; or chemical potential, is a longstanding question.

The momentum-dependence of the quark mass, illustrated in Fig. 1, is an essentially



quantum field theoretic effect, unrealisable in quantum mechanics, and a fundamental
feature of QCD. This single curve connects the infrared and ultraviolet regimes of the
theory, and establishes that the constituent-quark and current-quark masses are simply
two connected points separated by a large momentum interval. The curve shows that
QCD’s dressed-quark behaves as a constituent-quark, a current-quark, or something in
between, depending on the momentum of the probe which explores the bound-state con-
taining the dressed-quark. It follows that calculations addressing momentum transfers
Q2

∼> M2, where M is the mass of the hadron involved, require a Poincaré-covariant ap-
proach that can veraciously realise quantum field theoretical effects [27]. Owing to the
vector-exchange character of QCD, covariance also guarantees the existence of nonzero
quark orbital angular momentum in a hadron’s rest-frame [9, 28, 29].

The dressed-quark mass function has a remarkable capacity to correlate and be party
to explaining a wide range of diverse phenomena. This brings urgency to the need to
understand the relationship between parton properties in the light-front frame, whose
peculiar properties simplify some theoretical analyses, and the structure of hadrons as
measured in the rest frame or other smoothly related frames. This is a problem because,
e.g., DCSB, an established keystone of low-energy QCD, has not been realised in the
light-front formulation. The obstacle is the constraint k+ := k0 + k3 > 0 for massive
quanta on the light front [30]. It is therefore impossible to make zero momentum Fock
states that contain particles and hence the vacuum is trivial. Only the zero modes of
light-front quantisation can dress the ground state but little progress has been made with
understanding just how that might occur. On the other hand, it is conceivable that this
dressing is inextricably tied with the formation and structure of Goldstone modes and not
otherwise a measurable property of the vacuum. This conjecture is being explored [31,
32]. In addition, parton distribution functions, which have a probability interpretation in
the infinite momentum frame, must be calculated in order to comprehend their content:
parametrisation is insufficient. It would be very interesting to know, e.g., how, if at all,
the distribution functions of a Goldstone mode differ from those of other hadrons [10].

3. CONFINEMENT

It is worth stating plainly that the potential between infinitely-heavy quarks measured
in numerical simulations of quenched lattice-regularised QCD – the so-called static
potential – is simply irrelevant to the question of confinement in the real world, in which
light quarks are ubiquitous. In fact, it is a basic feature of QCD that light-particle creation
and annihilation effects are essentially nonperturbative and therefore it is impossible in
principle to compute a potential between two light quarks [33, 34].

A perspective on confinement was laid out in Ref. [35]. Confinement can be related to
the analytic properties of QCD’s Schwinger functions, which are often called Euclidean-
space Green functions. For example, it can be read from the reconstruction theorem
[36, 37] that the only Schwinger functions which can be associated with expectation
values in the Hilbert space of observables; namely, the set of measurable expectation
values, are those that satisfy the axiom of reflection positivity. This is an extremely
tight constraint. It can be shown to require as a necessary condition that the Fourier
transform of the momentum-space Schwinger function is a positive-definite function of



its arguments, and is discussed and illustrated in Sec. 2 of Ref. [9].
From this standpoint the question of light-quark confinement can be translated into the

challenge of charting the infrared behavior of QCD’s universal β -function. (Although
this function may depend on the scheme chosen to renormalise the theory, it is unique
within a given scheme [38]. Of course, the behaviour of the β -function on the perturba-
tive domain is well known.) This is a well-posed problem whose solution is an elemental
goal of modern hadron physics and which can be addressed in any framework enabling
the nonperturbative evaluation of renormalisation constants.

4. NONPERTURBATIVE DSE TRUNCATIONS

4.1. Existence and exact results

Through the gap and Bethe-Salpeter equations (BSEs) the pointwise behaviour of the
β -function determines the pattern of chiral symmetry breaking; e.g., the behaviour in
Fig. 1. Moreover, the fact that these and other DSEs connect the β -function to exper-
imental observables entails, e.g., that comparison between computations and observa-
tions of the hadron mass spectrum, and hadron elastic and transition form factors, can
be used to chart the β -function’s long-range behaviour.

In order to realise this goal, a nonperturbative symmetry-preserving DSE truncation is
necessary. Steady quantitative progress can be made with a scheme that is systematically
improvable [39, 40]. In fact, the mere existence of such a scheme has enabled the proof
of exact nonperturbative results in QCD. For example, there are veracious statements
about radially-excited and hybrid pseudoscalar mesons [41, 42]; and regarding the η-η ′

complex and π0-η-η ′ mixing, with predictions of θηη ′ = −15◦ and θπ0η = 1◦ [43]. In
connection with these systems, only theoretical studies that are demonstrably consistent
with the results proved in Refs. [41, 42, 43] can be considered seriously.

In addition, a novel result for the pion susceptibility was recently obtained via the
isovector-pseudoscalar vacuum polarisation [44]; viz., in the neighbourhood of the
chiral-limit the pion susceptibility can be expressed as a sum of two independent terms:

X5(ζ ) m̂ 0= −
⟨q̄q⟩0

ζ

m(ζ )
+X (ζ )+O(m̂) . (1)

The first expresses the pion-pole contribution and involves the so-called vacuum-quark
condensate. The second is identical to the vacuum chiral susceptibility, which describes
the response of QCD’s ground-state to a fluctuation in the current-quark mass.

Equation (1) is a remarkable result, which is nonetheless readily understood. Re-
call that in the absence of a current-quark mass, the two-flavour QCD action has a
SUL(2)⊗SUR(2) symmetry; and, moreover, that ascribing scalar-isoscalar quantum
numbers to the QCD vacuum is a convention, contingent upon the form of the current-
quark mass term. It follows that the massless action cannot distinguish between the
continuum of sources specified by

constant×
∫

d4x q̄(x)eiγ5⃗τ ·⃗θ q(x) , |θ | ∈ [0,2π) . (2)



Hence, the regular part of the vacuum susceptibility must be identical when measured
as the response to any one of these sources, so that Xreg. = X for all choices of θ⃗ .
This is the content of the so-called “Mexican hat” potential, which is used in building
models for QCD. The magnitude of X depends on whether the chiral symmetry is
dynamically broken, or not; and the strength of the interaction as measured with respect
to the critical value required for DCSB [45]. When the symmetry is dynamically broken,
then the Goldstone modes appear, by convention, in the pseudoscalar-isovector channel,
and thus the pole contributions appear in X5 but not in the chiral susceptibility. It is
valid to draw an analogy with the Weinberg sum rule [46, 47].

4.2. Expressing DCSB in the Bethe-Salpeter kernel

Despite the successes achieved with the systematic scheme, one anticipates that sig-
nificant qualitative advances in understanding the essence of QCD could be made with
symmetry-preserving kernel Ansätze that expresses important additional nonperturba-
tive effects, which are impossible to capture in any finite sum of contributions. Such an
approach has recently become available [48] and is worth summarising herein.

Consider, e.g., pseudoscalar and axial-vector mesons, which appear as poles in the
inhomogeneous BSE for the axial-vector vertex, Γ f g

5µ , where f ,g are flavour labels. An
exact form of that equation is (k, q are relative momenta, P is the total momentum
flowing into the vertex, and q± = q±P/2, etc.)

Γ f g
5µ(k;P) = Z2γ5γµ −

∫ Λ

q
g2Dαβ (k−q)

λ a

2
γαS f (q+)Γ f g

5µ(q;P)Sg(q−)
λ a

2
Γg

β (q−,k−)

+
∫ Λ

q
g2Dαβ (k−q)

λ a

2
γαS f (q+)

λ a

2
Λ f g

5µβ (k,q;P), (3)

where Λ f g
5µβ is a 4-point Schwinger function that is completely defined via the inverse of

the dressed-quark propagator; namely, the kernel of the gap equation:1

S(p)−1 = Z2 (iγ · p+mbm)+Z1

∫ Λ

q
g2Dµν(p−q)

λ a

2
γµS(q)Γa

ν(q, p), (4)

where
∫ Λ

q indicates a Poincaré invariant regularisation of the integral, with Λ the regular-
isation mass-scale, Dµν is the renormalised dressed-gluon propagator, Γa

ν is the renor-
malised dressed-quark-gluon vertex, and mbm is the quark’s Λ-dependent bare current-
mass. The vertex and quark wave-function renormalisation constants, Z1,2(ζ 2,Λ2), de-
pend on the gauge parameter. The solution to Eq. (4) has the form

S(p) =
1

iγ · pA(p2,ζ 2)+B(p2,ζ 2)
=

Z(p2,ζ 2)
iγ · p+M(p2)

, (5)

1 In our Euclidean metric: {γµ ,γν} = 2δµν ; γ†
µ = γµ ; γ5 = γ4γ1γ2γ3; σµν = (i/2)[γµ ,γν ]; a ·b = ∑4

i=1 aibi;
and Pµ timelike ⇒ P2 < 0. More information is available, e.g., in App. A of Ref. [6].



where the mass function, M(p2) = B(p2,ζ 2)/A(p2,ζ 2) is independent of the renormal-
isation point, ζ . The pseudoscalar vertex satisfies an analogue of Eq. (3) and has the
general form

iΓ f g
5 (k;P) = γ5

[
iE5(k;P)+ γ ·PF5(k;P)+ γ · k G5(k;P)+σµνkµPνH5(k;P)

]
. (6)

In any dependable study of light-quark hadrons the solution of Eq. (3) must satisfy the
axial-vector Ward-Takahashi; viz.,

PµΓ f g
5µ(k;P)+ i [m f (ζ )+mg(ζ )]Γ f g

5 (k;P) = S−1
f (k+)iγ5 + iγ5S−1

g (k−) , (7)

which expresses chiral symmetry and its breaking pattern. The condition

PµΛ f g
5µβ (k,q;P)+ i[m f (ζ )+mg(ζ )]Λ f g

5β (k,q;P) = Γ f
β (q+,k+) iγ5 + iγ5 Γg

β (q−,k−) , (8)

where Λ f g
5β is the analogue of Λ f g

5µβ in the pseudoscalar equation, is necessary and
sufficient to ensure the Ward-Takahashi identity is satisfied [48].

Consider Eq. (8). Rainbow-ladder is the leading-order term in a systematic DSE
truncation scheme [39, 40]. It corresponds to Γ f

ν = γν , in which case Eq. (8) is solved by
Λ f g

5µβ ≡ 0 ≡ Λ f g
5β . This is the solution that indeed provides the rainbow-ladder forms

of Eq. (3). Such consistency will be apparent in any valid systematic term-by-term
improvement of the rainbow-ladder truncation.

However, Eq. (8) is far more than just a device for checking a truncation’s consistency.
For, just as the vector Ward-Takahashi identity has long been used to build Ansätze for
the dressed-quark-photon vertex [1, 49, 50], Eq. (8) provides a tool for constructing a
symmetry-preserving kernel of the BSE that is matched to any reasonable Ansatz for
the dressed-quark-gluon vertex which appears in the gap equation. With this powerful
capacity, Eq. (8) achieves a goal that has been sought ever since the Bethe-Salpeter
equation was introduced [51]. As we shall indicate, the symmetry-preserving kernel
it can provide promises to enable the first reliable Poincaré invariant calculation of the
spectrum of mesons with masses larger than 1 GeV.

One can illustrate the utility of Eq. (8) through an application to ground state pseu-
doscalar and scalar mesons composed of equal-mass u- and d-quarks. To this end, sup-
pose that in Eq. (4) one employs an Ansatz for the quark-gluon vertex which satisfies

Pµ iΓ f
µ(k+,k−) = B(P2)

[
S−1

f (k+)−S−1
f (k−)

]
, (9)

with B flavour-independent. (NB. While the true quark-gluon vertex does not satisfy
this identity, owing to the form of the Slavnov-Taylor identity which it does satisfy, it is
plausible that a solution of Eq. (9) can provide a reasonable pointwise approximation to
the true vertex.) Given Eq. (9), then Eq. (8) entails (l = q− k)

ilβ Λ f g
5β (k,q;P) = B(l)2

[
Γ f g

5 (q;P)−Γ f g
5 (k;P)

]
, (10)

with an analogous equation for Pµ lβ iΛ f g
5µβ (k,q;P). This identity can be solved to obtain

Λ f g
5β (k,q;P) := B((k−q)2)γ5 Λ f g

β (k,q;P) , (11)



with, using Eq. (6),

Λ f g
β (k,q;P) = 2ℓβ [i∆E5(q,k;P)+ γ ·P∆F5(q,k;P)]+ γβ ΣG5(q,k;P)

+2ℓβ γ · ℓ∆G5(q,k;P)+ [γβ ,γ ·P]ΣH5(q,k;P)+2ℓβ [γ · ℓ,γ ·P]∆H5(q,k;P) , (12)

where ℓ = (q + k)/2, ΣΦ(q,k;P) = [Φ(q;P)+ Φ(k;P)]/2 and ∆Φ(q,k;P) = [Φ(q;P)−
Φ(k;P)]/[q2 − k2].

Now, given any Ansatz for the quark-gluon vertex that satisfies Eq. (9), then the pseu-
doscalar analogue of Eq. (3) and Eqs. (4), (11), (12) provide a symmetry-preserving
closed system whose solution predicts the properties of pseudoscalar mesons. The rele-
vant scalar meson equations are readily derived. (NB. We are aware of the role played
by resonant contributions to the kernel in the scalar channel [52] but they are not perti-
nent to this discussion.) With these systems one can anticipate, elucidate and understand
the influence on hadron properties of the rich nonperturbative structure expected of the
fully-dressed quark-gluon vertex in QCD: in particular, that of the dynamically gener-
ated dressed-quark mass function, whose impact is quashed at any finite order in the
truncation scheme of Ref. [40].

To proceed one need only specify the gap equation’s kernel because, as noted above,
the BSEs are completely defined therefrom. To complete the illustration [48] a simplified
form of the effective interaction in Ref. [53] was employed and two vertex Ansätze were
compared; viz., the bare vertex Γg

µ = γµ , which defines the rainbow-ladder truncation
of the DSEs and omits vertex dressing; and the Ball-Chiu (BC) vertex [49] which
nonperturbatively incorporates vertex dressing associated with DCSB:

iΓg
µ(q,k) = iΣAg(q2,k2)γµ +2ℓµ

[
iγ · ℓ∆Ag(q2,k2)+∆Bg(q2,k2)

]
. (13)

A particular novelty of the study is that one can calculate the current-quark-mass-
dependence of meson masses using a symmetry-preserving DSE truncation whose dia-
grammatic content is unknown. That dependence is depicted in Fig. 2 and compared with
the rainbow-ladder result. The m-dependence of the pseudoscalar meson’s mass provides
numerical confirmation of the algebraic fact that the axial-vector Ward-Takahashi iden-
tity is preserved by both the rainbow-ladder truncation and the BC-consistent Ansatz for
the Bethe-Salpeter kernel. The figure also shows that the axial-vector Ward-Takahashi
identity and DCSB conspire to shield the pion’s mass from material variation in response
to dressing the quark-gluon vertex [8, 54].

As noted in Ref. [48], a rainbow-ladder kernel with realistic interaction strength yields

εRL
σ :=

2M(0)−mσ
2M(0)

∣∣∣∣
RL

= (0.3±0.1) , (14)

which can be contrasted with the value obtained using the BC-consistent Bethe-Salpeter
kernel; viz.,

εBC
σ ∼< 0.1 . (15)

Plainly, significant additional repulsion is present in the BC-consistent truncation of the
scalar BSE.
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FIGURE 2. Dependence of pseudoscalar (left panel) and scalar (right) meson masses on the current-
quark mass, m. The Ball-Chiu vertex (BC) result is compared with the rainbow-ladder (RL) result. (Figure
adapted from Ref. [48].)

Scalar mesons are commonly identified as 3P0 states. This assignment expresses
a constituent-quark-model perspective, from which a JPC = 0++ fermion-antifermion
bound-state must have the constituents’ spins aligned and one unit of constituent orbital
angular momentum; and hence a scalar is a spin and orbital excitation of a pseudoscalar
meson. Of course, no constituent-quark-model can be connected systematically with
QCD. Nevertheless, as we observed above, the presence of orbital angular momentum
in a hadron’s rest frame is a necessary consequence of Poincaré covariance and the
vector-boson-exchange character of QCD [9, 28, 29], so there is a realisation in QCD of
the quark-model anticipation.

Extant studies of realistic corrections to the rainbow-ladder truncation show that
they reduce hyperfine splitting [54]. Hence, with the comparison between Eqs. (14)
and (15) one has a clear indication that in a Poincaré covariant treatment the BC-
consistent truncation magnifies spin-orbit splitting, an effect which can be attributed to
the influence of the quark’s dynamically-enhanced scalar self-energy [9] in the Bethe-
Salpeter kernel.

5. QUARK ANOMALOUS CHROMOMAGNETIC MOMENT

It was conjectured in Ref. [48] that the full realisation of DCSB in the Bethe-Salpeter
kernel will have a material impact on mesons with mass greater than 1 GeV. Moreover,
that it can overcome a longstanding failure of theoretical hadron physics. Namely,
no extant hadron spectrum calculation is believable because all symmetry preserving
studies produce a splitting between vector and axial-vector mesons that is far too small:
just one-quarter of the experimental value (see, e.g., Refs. [55, 56, 57]).
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FIGURE 3. Left panel – solution of vector-vertex Bethe-Salpeter equation; and right panel – analogue
for the axial-vector vertex. In both panels, short-dashed curve – rainbow-ladder truncation; long-dashed
curve – Ball-Chiu-consistent truncation; and solid curve – improved BC-vertex, with quark anomalous
chromomagnetic moment, Eqs. (16), (17). From the zero in the curves, one reads the mass-squared of the
lightest meson supported by the assumed kernel in each channel.

In this connection, preliminary results2 are now available [58] and they are sum-
marised in Fig. 3. The curves are obtained by solving the inhomogeneous vector- and
axial-vector-vertex BSEs at spacelike momenta, and fitting a Padé approximant to ex-
trapolate the result to timelike momenta. Each vertex has a dominant Dirac covariant:
γµ F1

V (k;P), γµ F1
A (k;P), respectively; and the curves in Fig. 3 depict the P2-dependence

of 1/F1
V,A(k = 0;P2) =: GV,A(P2). The location of the first zero in such a curve yields

the mass-squared of the lightest bound-state produced by the assumed interaction in the
associated channel [59]. The masses thus determined are listed in Table 1.

To illustrate the longstanding difficulty, using the interaction described in Ref. [48],
the masses were first calculated in rainbow-ladder truncation; viz., leading-order in the
systematic and symmetry-preserving truncation scheme of Ref. [40]. As anticipated,
while the ρ-meson mass is acceptable, the a1-mass is far too small.

As we saw above, the procedure introduced in Ref. [48] enables meson masses to be
calculated using a symmetry-preserving DSE truncation whose diagrammatic content
is unknown. One can therefore elucidate the effect of an essentially nonperturbative
DCSB component in dressed-quark gluon vertex on the ρ-a1 complex; in this case, the
∆B term in Eq. (13) – recall the enormous impact of this term in the scalar channel,
Fig. 2. The result is shown in Fig. 3: the DCSB ∆B-term boosts the a1 mass, which is a
positive outcome, but it simultaneously boosts the ρ mass, such that the mass-splitting
is practically unchanged from the rainbow-ladder result – see Table 1. Was Ref. [48]
too optimistic in expressing a hope that the scheme introduced could provide the first
realistic meson spectrum that also encompassed states with mass greater-than 1 GeV?

Before answering, let us return to a consideration of chirally symmetric QCD. That
theory exhibits helicity conservation so that, perturbatively, the quark-gluon vertex can-
not have a term with the helicity-flipping characteristics of ∆B. There is another feature

2 Preliminary in the sense that not all Dirac covariants are employed in solving for the vertices and internal
consistency checks for the pseudoscalar and scalar channels are still underway.



TABLE 1. Axial-vector and vector meson masses calculated in three truncations of the coupled
gap and Bethe-Salpeter equations. The last column was obtained using the standard Ball-Chiu Ansatz
augmented by the quark anomalous chromomagnetic moment in Eqs. (16), (17).

experiment rainbow-ladder Ball-Chiu consistent Ball-Chiu
plus anom. cm mom.

mass a1 1230 759 1066 1230
mass ρ 775 644 924 745
mass splitting 455 142 248 485

of massless fermions in gauge field theories; namely, they cannot posses an anoma-
lous chromo/electro-magnetic moment because the term that describes it couples left-
and right-handed fermions. However, if the theory’s chiral symmetry is strongly bro-
ken dynamically, why shouldn’t the fermions posses a large anomalous chromo/electro-
magnetic moment? Such an effect is expressed in the quark-gluon-vertex via a term

Γacm
µ (q,k) = σµν(q− k)ν τ5(q,k) (16)

where, owing to DCSB, the natural strength is represented by the Ansatz

τ5(q,k) = ∆B(q2,k2) . (17)

NB. Based on the models in Refs. [27, 60], 2MEZ(M2
E)∆B(M2

E ,M2
E) ∼ 0.5–0.6, where

ME is the Euclidean constituent-quark mass, defined in Ref. [53].
Using the procedure introduced in Ref. [48], the vector and axial-vector vertex equa-

tions can be solved using the dressed-quark-gluon vertex obtained as the sum of
Eqs. (13) and (16). The effect is remarkable and plain in Fig. 3: the anomalous chro-
momagnetic moment leads to additional repulsion in the a1 channel but significant at-
traction in the ρ channel such that, for the first time, a realistic result is simultaneously
obtained for the masses in both these channels, and hence the a1-ρ mass-splitting – see
Table 1. Furthermore, the origin of the splitting, in an interference between ∆B in Eq. (13)
and τ5 in Eqs. (16), (17) is intuitively appealing. In the chiral limit the mass-splitting be-
tween parity partners should owe solely to DCSB and here that is seen explicitly: in the
absence of DCSB, ∆B ≡ 0 ≡ τ5. The rainbow-ladder result is also understood: this trun-
cation fails to adequately express DCSB in the Bethe-Salpeter kernel and hence cannot
realistically split parity partners.

Notably, Table 1 is a “first-guess” result; i.e., there was no tuning of the strength in
Eq. (17), so how reliable can it be? This question amounts to deciding whether a realistic
size is assumed for a light-quark’s anomalous chromomagnetic moment. Fortunately,
an analysis is available of results for the dressed-quark-gluon vertex obtained through
numerical simulations of quenched-QCD [61]. This study shows that τ5 is dynamically
two orders-of-magnitude larger than the one-loop perturbative result and, indeed, is of
the same magnitude and possesses the same domain of significant support as ∆B(q2,k2),
precisely in accordance with the assumption we have made.

At this point it is natural to consider whether DCSB in QCD can also generate a
large quark anomalous electromagnetic moment term in the quark-photon vertex. In
perturbation theory, of course, since it doesn’t express DCSB, the quark’s anomalous



electromagnetic moment is small [62]. One obtains the same answer in the rainbow-
ladder truncation; e.g., the F6 and F8 terms in Ref. [63], which combine to form τ5 in our
notation, contribute less-than 1% to the pion’s electromagnetic form factor. However,
as we’ve already seen, this truncation doesn’t adequately incorporate DCSB into the
Bethe-Salpeter kernel. At present there is no concrete information available that can be
used to answer the question but that is about to change. Upon completion of the study of
the a1-ρ complex, we will have determined the magnitude of the analogue of τ5 in the
colour-singlet vector vertex. It could plausibly be large.

We reiterate that the large quark anomalous chromomagnetic moment owes to DCSB,
which itself is probably a consequence of confinement; and real-world electrons and
muons do not couple directly to interactions associated with, or degrees-of-freedom
affected by, DCSB. There is thus little reason to anticipate measurable contributions
to the electron and muon anomalous electromagnetic moments. Nevertheless, given the
magnitude of the muon “gµ − 2 anomaly” and its assumed importance as an harbinger
of physics beyond the Standard Model [64], it might be worthwhile to compute a
quantitative estimate of the contribution to aµ = (gµ − 2)/2 from the quark’s DCSB-
induced anomalous chromomagnetic, and possibly electromagnetic, moments. Such
contributions will appear in the hadronic component of the photon polarisation tensor.

6. PION ELECTROMAGNETIC FORM FACTOR

In charting the long-range interaction between light-quarks via the feedback between
experiment and theory, hadron elastic and transition form factors can provide unique in-
formation, beyond that obtained through studies of the hadron spectrum. This is demon-
strated very clearly by an analysis of the electromagnetic pion form factor, Fem

π (Q2),
because the pion has a unique place in the Standard Model. It is a bound-state of a
dressed-quark and -antiquark, and also that almost-massless collective excitation which
is the Goldstone mode arising from the dynamical breaking of chiral symmetry. This
dichotomy can only be understood by merging the study of many-body aspects of the
QCD vacuum with the symmetry-preserving analysis of two-body bound-states [65].
Furthermore, the possibility that this dichotomous nature could have wide-ranging ef-
fects on pion properties has made the empirical investigation of these properties highly
desirable, despite the difficulty in preparing a system that can act as a pion target and the
concomitant complexities in the interpretation of the experiments; e.g., [66, 67, 68, 69].

The merit of using Fem
π (Q2) to elucidate the potential of an interplay between exper-

iment and nonperturbative theory, as a means of constraining the long-range behaviour
of QCD’s β -function, is amplified by the existence of a prediction [70, 71, 72] that
Q2Fπ(Q2) ≈constant for Q2 ≫ m2

π in a theory whose interaction is mediated by mass-
less vector-bosons. The verification of this prediction is a strong motivation for modern
experiment [66, 67, 68], which can also be viewed as an attempt to constrain and map
experimentally the pointwise behaviour of the exchange interaction that binds the pion.



Poincaré covariance entails that the Bethe-Salpeter amplitude for an isovector pseu-
doscalar bound-state of a dressed-quark and -antiquark takes the form

Γ j
π(k;P) = τ jγ5

[
iEπ(k;P)+ γ ·PFπ(k;P)+ γ ·Pγ · k Gπ(k;P)+σµνkµPνHπ(k;P)

]
,

(18)
where {τ j, j = 1,2,3} are the Pauli matrices. This amplitude is determined from a
homogeneous BSE; exemplified, e.g., by Eq. (3) with the driving term, Z2γ5γµ , omitted.

We can now explicate one of the most important consequences of DCSB. Namely, a
set of four Goldberger-Treiman relations, exact in chiral-limit QCD [65]:

f 0
π Eπ(k;0) = B0(k2) , FR(k;0)+2 f 0

π Fπ(k;0) = A0(k2) ,
GR(k;0)+2 f 0

π Gπ(k;0) = A′
0(k

2) , HR(k;0)+2 f 0
π Hπ(k;0) = 0 .

(19)

Here A0(k2), B0(k2) describe the solution of the chiral limit gap equation; f 0
π is the

pion’s chiral-limit leptonic decay constant; and one has used the following features of
the chiral-limit axial-vector vertex:

Γ j
5µ(k;P) P2≃0=

Pµ

P2 f 0
π Γ j

π(k;P)

+
τ j

2
γ5

[
γµFπ(k;P)+ γµγ · k Gπ(k;P)−σµνkνHπ(k;P)

]
+Γreg

5µ (k;P) , (20)

where FR, GR, HR, Γreg
5µ (k;P) are regular for P2 ≃ 0 and PµΓreg

5µ (k;P)∼O(P2) for P2 ≃ 0.
Equations (19) are fascinating and have far-reaching consequences. The first identity

states that, owing to DCSB, the dominant piece of the pseudoscalar meson Bethe-
Salpeter amplitude is completely determined by the scalar piece of the dressed-quark
self-energy; i.e., by solving the quark one-body problem, one obtains simultaneously
the solution for an important part of the pseudoscalar meson two-body problem. The
next two demonstrate that a pseudoscalar meson necessarily contains components of
pseudovector origin. These terms alter the asymptotic form of Fem

π (Q2) by a factor of Q2

cf. the result obtained in their absence [73]. One may consider Eqs. (19) as an expression
of pointwise consequences of Goldstone’s theorem, which is therefore seen to have an
impact far broader than that described in textbooks.

QCD-based DSE calculations of Fem
π (Q2) exist [73, 74], the most systematic of which

[74] predicted the measured form factor [66]. Germane to our discourse, however, is an
elucidation of the sensitivity of Fem

π (Q2) to the pointwise behaviour of the interaction
between quarks. We therefore recapitulate on Ref. [75], which explored how predictions
for pion properties change if quarks interact not via massless vector-boson exchange but
instead through a contact interaction; viz.,

g2Dµν(p−q) = δµν
1

m2
G

, (21)

where mG is a gluon mass-scale (such a scale is generated dynamically in QCD, with a
value ∼ 0.5GeV [76]), and proceeded by embedding this interaction in a rainbow-ladder
truncation of the DSEs.



TABLE 2. Results obtained with (in GeV) m = 0, mG = 0.11, Λir = 1/τir = 0.24,
Λuv = 1/τuv = 0.823. They are commensurate with those from QCD-based DSE
studies [53]. Dimensioned quantities are listed in GeV or fm, as appropriate, and
κ := −⟨q̄q⟩1/3.

N Ec
π Fc

π FR M κ f 0
π f 0

π
∣∣
Fπ→0 r0

π r0
π
∣∣
Fπ→0

0.23 4.28 0.69 0.68 0.40 0.22 0.094 0.11 0.29 0.41

In this case, using a confining regularisation scheme [77], the gap equation, which de-
termines this interaction’s momentum-independent dressed-quark mass, can be written

M = m+
M

3π2m2
G

C (M2;τir,τuv) , (22)

where m is the current-quark mass and C /M2 = Γ(−1,M2τ2
uv)− Γ(−1,M2τ2

ir), with
Γ(α,y) being the incomplete gamma-function. Results are presented in Table 2.

With a symmetry-preserving regularisation of the interaction in Eq. (21), the Bethe-
Salpeter amplitude cannot depend on relative momentum. Hence Eq. (18) becomes

Γπ(P) = γ5

[
iEπ(P)+

1
M

γ ·PFπ(P)
]

(23)

and the explicit form of the model’s ladder BSE is[
Eπ(P)
Fπ(P)

]
=

1
3π2m2

G

[
KEE KEF
KFE KFF

][
Eπ(P)
Fπ(P)

]
, (24)

where, with m = 0 = P2, anticipating the Goldstone character of the pion,

KEE = C (M2;τ2
ir,τ

2
uv) , KEF = 0 ,

2KFE = C1(M2;τ2
ir,τ

2
uv) , KFF = −2KFE ,

(25)

and C1(z) = −zC ′(z), where we have suppressed the dependence on τir,uv. The solution
of Eq. (24) gives the pion’s chiral-limit Bethe-Salpeter amplitude:

E1
π = 0.987 , F1

π = 0.160 , (26)

written with unit normalisation.
However, this is not the physical convention. The canonical normalisation procedure

ensures unit residue for the pion bound-state contribution to the quark-antiquark scatter-
ing matrix, a property of Γc

π(P) = 1
N Γ1

π(P), where

N 2Pµ = Nc tr
∫ d4q

(2π)4 Γ1
π(−P)

∂
∂Pµ

S(q+P)Γ1
π(P)S(q) . (27)

In the chiral limit,

N 2
0 =

Nc

4π2
1

M2 C1(M2;τ2
ir,τ

2
uv)E

1
π [E1

π −2F1
π ]. (28)



The pion’s leptonic decay constant is obtained from the canonically normalised ampli-
tude and in the chiral limit

f 0
π =

Nc

4π2
1
M

C1(M2;τ2
ir,τ

2
uv)[E

c
π −2Fc

π ] . (29)

If one has preserved Eq. (7), then, for m = 0 in the neighbourhood of P2 = 0, the
solution of the axial-vector BSE has the form – cf. Eq. (20):

Γ5µ(k+,k) =
Pµ

P2 2 f 0
π Γc

π(P)+ γ5γµFR(P) (30)

and the following subset of Eqs. (19) will hold:

f 0
π Ec

π = M , 2
Fc

π
Ec

π
+FR = 1 . (31)

That they do can be verified from Table 2, which also shows that Fπ(P), necessarily
nonzero in a vector exchange theory, irrespective of the pointwise behaviour of the
interaction, has a measurable impact on the value of fπ .

Based upon these results, one can proceed to compute the electromagnetic pion
form factor in the generalised impulse approximation [75]; i.e., at leading-order in a
symmetry-preserving DSE truncation scheme [73, 74, 78]. Namely, for an incoming
pion with momentum p1 = K−Q/2, which absorbs a photon with space-like momentum
Q, so that the outgoing pion has momentum p2 = K +Q/2,

2KµFem
π (Q2) = 2Nc

∫ d4t
(2π)4 trD

[
iΓc

π(−p2)S(t + p2)iγµS(t + p1) iΓc
π(p1) S(t)

]
. (32)

The form factor is expressible as a sum; viz.,

Fem
π (Q2) = Fem

π,EE(Q2)+Fem
π,EF(Q2)+Fem

π,FF(Q2), (33)

= Ec
π

2T π
EE(Q2)+Ec

πFc
π T π

EF(Q2)+Fc
π

2T π
FF(Q2), (34)

wherein each function T π has a simple algebraic form in this model.
In the left panel of Fig. 4 we present Fem

π (Q2) and the three separate contributions
defined in Eq. (34). We highlight two features. First, Fem

π,EF(Q2 = 0) contributes roughly
one-third of the pion’s unit charge. This could have been anticipated from Eq. (28).
Second, and perhaps more dramatic: the interaction in Eq. (21) generates

Fem
π (Q2 → ∞) = constant. (35)

Both results originate in the nonzero value of Fπ(P), which is a straightforward conse-
quence of the symmetry-preserving treatment of a vector exchange theory [65]. Equa-
tion (35) should not come as a surprise: with a symmetry-preserving regularisation of the
interaction in Eq. (21), the pion’s Bethe-Salpeter amplitude cannot depend on the con-
stituent’s relative momentum. This is characteristic of a pointlike particle, which must
have a hard form factor.
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FIGURE 4. Left panel. Fem
π (Q2) and the separate contributions introduced in Eq. (34). Fem

π (Q2 = 0) =
1, without fine-tuning, because a symmetry-preserving regularisation of the interaction in Eq. (21) was
implemented. Right panel. Solid curve: Q2Fπ(Q2) obtained with Eq. (21). Dashed curve: DSE prediction
[74], which employed a momentum-dependent renormalisation-group-improved gluon exchange inter-
action. For Q2 > 0.17GeV2 ≈ M2, marked by the vertical dotted line, the contact interaction result for
Fem

π (Q2) differs from that in Ref. [74] by more than 20%. The data are from Refs. [66, 67, 68]. (Figure
adapted from Ref. [75].)

A striking outcome, evident in Fig. 4: Fem
π,EE is only a good approximation to the net

pion form factor for Q2
∼< M2. Fem

π,EE and Fem
π,EF evolve with equal rapidity – there is no

reason for this to be otherwise, as they are determined by the same mass-scales – but a
nonzero constant comes quickly to dominate over a form factor that falls swiftly to zero.

In the right panel of Fig. 4 we compare the form factor computed from Eq. (21) with
contemporary experimental data [66, 67, 68] and a QCD-based DSE prediction [74].
Both the QCD-based result and that obtained from the momentum-independent inter-
action yield the same values for the pion’s static properties. However, for Q2 > 0 the
form factor computed using ∼ 1/k2 vector boson exchange is immediately distinguish-
able empirically from that produced by a momentum-independent interaction. Indeed,
the figure shows that for Fem

π , existing experiments can already distinguish between dif-
ferent possibilities for the quark-quark interaction.

This summary illustrates that when a momentum-independent vector-exchange inter-
action is regularised in a symmetry-preserving manner, the results are directly compara-
ble with experiment, computations based on well-defined and systematically-improvable
truncations of QCD’s DSEs [74], and perturbative QCD. In this context it will now be
apparent that a contact interaction, whilst capable of describing pion static properties
well, Table 2, generates a form factor whose evolution with Q2 deviates markedly from
experiment for Q2 > 0.17GeV2 ≈ M2 and produces asymptotic power-law behaviour,
Eq. (35), in serious conflict with perturbative-QCD [70, 71, 72].

In closing this section we note that the contact interaction produces a momentum-
independent dressed-quark mass function, in contrast to QCD-based DSE studies [9, 18]
and lattice-QCD [19]. This is fundamentally the origin of the marked discrepancy be-
tween the form factor it produces and extant experiment. Hence Ref. [75] highlights that
form factor observables, measured at an upgraded Jefferson laboratory, e.g., are capa-



ble of mapping the running of the dressed-quark mass function. Efforts are underway to
establish the signals of the running mass in baryon elastic and transition form factors.

7. PION AND KAON VALENCE-QUARK DISTRIBUTIONS

The past forty years has seen a tremendous effort to deduce the parton distribution func-
tions of the most accessible hadrons – the proton, neutron and pion. There are many rea-
sons for this long sustained and thriving interest [10] but in large part it is motivated by
the suspected process-independence of the usual parton distribution functions and hence
an ability to unify many hadronic processes through their computation. In connection
with uncovering the essence of the strong interaction, the behaviour of the valence-quark
distribution functions at large Bjorken-x is most relevant. Importantly, in the infinite mo-
mentum frame, Bjorken-x measures the fraction of a hadron’s four-momentum carried
by the struck parton and, e.g., the valence-quark distribution function, qv(x), measures
the number-density of valence-quarks with momentum-fraction x.

Owing to the dichotomous nature of Goldstone bosons, understanding the valence-
quark distribution functions in the pion and kaon is of great importance. Moreover,
given the large value of the ratio of s-to-u current-quark masses, a comparison between
the pion and kaon structure functions offers the chance to chart effects of explicit chiral
symmetry breaking on the structure of would-be Goldstone modes. There is also the
prediction [79, 80] that a theory in which the quarks interact via 1/k2 vector-boson
exchange will produce valence-quark distribution functions for which

qv(x) ∝ (1− x)2+γ , x ∼> 0.85 , (36)

where γ ∼> 0 is an anomalous dimension that grows with increasing momentum transfer.
(See Sec.VI.B.3 of Ref. [10] for a detailed discussion.)

Experimental knowledge of the parton structure of the pion and kaon arises primarily
from pionic or kaonic Drell-Yan scattering from nucleons in heavy nuclei [69, 81, 82].
Theoretically, given that DCSB plays a crucial role in connection with pseudoscalar
mesons, one must employ an approach that realistically expresses this phenomenon.
The DSEs therefore provide a natural framework: a study of the pion exists [83] and one
of the kaon is underway [84].

One can illustrate the results anticipated from the latter study through an internally
consistent calculation based upon the QCD-improvement of a simple model used al-
ready for pion and kaon distribution functions [85]. In its original form, as a version
of the Nambu-Jona–Lasinio model with a hard-cutoff, Λ = 0.9GeV, and momentum-
independent dressed-quark masses, M̌u = 0.35GeV and M̌s = 0.53GeV, the model yields
valence-quark distribution functions that behave as (1−x) at large x, in conflict with per-
turbative QCD and nonperturbative DSE studies. However, this can be remedied through
the inclusion of a pion Bethe-Salpeter amplitude whose dependence on relative momen-
tum is QCD-like; viz., ϕπ(k2) ∝ 1/k2 when the magnitude of k2 is large. To be explicit,

uπ
v (x) = −g2

π d̄u

∫ κuv

κir

dκ
κ −Mu(κ)2 − xm2

π
(κ −Mu(κ)2)2 ϕπ(κ) , (37)



TABLE 3. Leading moments of our valence u-quark distributions:
⟨xn⟩Q :=

∫ 1
0 dx xnuv(x;Q), with Q0 = 0.57GeV and Q = 5GeV. For com-

parison, the first numerical column shows results from Ref. [83].

uπ
v (x;Q0) [83] uπ

v (x;Q0) uπ
v (x;Q) uK

v (x;Q0) uK
v (x;Q)

⟨x⟩ 0.36 0.35 0.21 0.32 0.19
⟨x2⟩ 0.18 0.17 0.078 0.15 0.066
⟨x3⟩ 0.10 0.10 0.037 0.078 0.029

where κir = −x(M̌2
u −m2

π(1− x))/(1− x), with κir −κuv = Λ2;

ϕπ(κ) =
exp(κ/Λ2

π)−1
κ/Λ2

π
; Mu(κ) = mu +(M̌u −mu)ϕπ(κ) , (38)

which is an Ansatz for the momentum-dependent dressed-quark mass, Mu(k2), with
mu = 5.5MeV, in a form motivated by the first of Eqs. (19); and the value of the pion-
quark-antiquark coupling constant, gπ d̄u, ensures∫ 1

0
dx uπ

v (x) = 1 . (39)

A value of Λπ = 0.6GeV provides a satisfactory least-squares fit to {uπ
v (x),x > 0.4} in

Ref. [83]. (NB. The hard cutoff in Eq. (37), mimics the effect of a second Bethe-Salpeter
amplitude, which would otherwise appear.)

Repeating the analysis for the kaon, we obtain

uK
v (x) = −g2

Ks̄u

∫ κ̃uv

κ̃ir

dκ
κ −Mu(κ)2 + x(M̌2

u − M̌2
s −m2

K)
(κ −Mu(κ)2)2 ϕK(κ) , (40)

where κ̃ir = −x(M̌2
s −m2

K(1− x))/(1− x), with κ̃ir − κ̃uv = Λ2;

ϕπ(κ) =
exp(κ/Λ2

K)−1
κ/Λ2

K
, Ms(κ) = ms +(Ms −ms)ϕK(κ) , (41)

with ms = 0.135GeV and ΛK = 1.1Λπ , the latter value motivated by the BSE results in
Ref. [53]; and the value of gKs̄u ensures the kaon analogue of Eq. (39).

In Table 3 we report low moments of the computed valence-quark distribution func-
tions. The near numerical agreement between entries in the first two columns is an il-
lustration of the similarity between our model distribution and that by which it was con-
strained [83]. However, it should be borne in mind that these low moments are not very
sensitive to the pointwise behaviour of distributions near x = 1 – see, e.g., Secs. VI.B.2
and VI.B.3 of Ref. [10].

In Fig. 5 we depict our computed distributions themselves and relevant ratios. As-
pects of the curves are model-independent. For example, owing to its larger mass, one
anticipates that the s-quark should carry more of the charged-kaon’s momentum than the
u-quark. This explains, in a manner which is transparent in this model, why the support



0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

x uv
Π,K
HxL

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1.

1.2

uv
KHxL

uv
ΠHxL

FIGURE 5. Left panel. Valence u-quark distribution functions, computed as described in the text: solid
curve, uπ

v (x); and dashed curve, uK
v (x). Applying leading-order QCD evolution from Q2

0 = 0.32GeV2

to Q2 = 25GeV2, explained in Sec. II.D of Ref. [10], one obtains the other two curves from these
starting distributions: dashed curve, uπ

v (x;25); and dotted curve, uK
v (x,25). Right panel. Model ratio

uK
v /uπ

v evaluated at Q2
0 = 0.32GeV2, Dashed curve, and Q2 = 25GeV2, solid curve. uK

v /uπ
v
∣∣
x=1 = 0.13.

Under the right conditions, uK
v /uπ

v should equal the ratio of kaon-to-pion Drell-Yan cross-sections, and
we reproduce that obtained from a sample of dimuon events with invariant mass 4.1 < M < 8.5GeV [81].

of xuK
v (x) is shifted to lower-x than that xuπ

v (x). QCD evolution is an area-conserving op-
eration on the distribution function, which shifts support from large-x to small-x. Thus,
while both uπ,K

v (x;Q0) ∝ (1− x)2 for x ≃ 1,

uπ,K
v (x;Q) x≃1∝ (1− x)a, a = 2.7 . (42)

These observations explain the qualitative behaviour of the evolved distributions. Con-
cerning the ratio, as a consequence of the form of the evolution equations, the value of
the ratio at x = 1 is invariant under evolution. At the other extreme, the value of the ratio
at x = 0 approaches one under evolution owing to the increasingly large population of
sea-quarks produced thereby.

8. BARYON PROPERTIES

While a symmetry-preserving description of mesons is essential, it is only part of the
physics that nonperturbative QCD must describe since Nature also presents baryons,
light-quarks in three-particle composites. An explanation of the spectrum of baryons
and the nature of interactions between them is basic to understanding the Standard
Model. The present and planned experimental programmes at JLab, and other facilities
worldwide, are critical elements in this effort.

No approach to QCD is comprehensive if it cannot provide a unified explanation of
both mesons and baryons. We have explained that DCSB is a keystone of the Standard
Model, which is evident in the momentum-dependence of the dressed-quark mass func-
tion – Fig. 1: it is just as important to baryons as it is to mesons. The DSEs furnish the
only extant framework that can simultaneously connect both meson and baryon observ-



ables with this basic feature of QCD, having provided, e.g., a direct correlation of meson
and baryon properties via a single interaction kernel, which preserves QCD’s one-loop
renormalisation group behaviour and can systematically be improved [86, 87].

In quantum field theory a baryon appears as a pole in a six-point quark Green function.
The residue is proportional to the baryon’s Faddeev amplitude, which is obtained from a
Poincaré covariant Faddeev equation that sums all possible exchanges and interactions
that can take place between three dressed-quarks. A tractable Faddeev equation for
baryons [88] is founded on the observation that an interaction which describes colour-
singlet mesons also generates nonpointlike quark-quark (diquark) correlations in the
colour-3̄ (antitriplet) channel [89]. The lightest diquark correlations appear in the JP =
0+,1+ channels [90, 91] and hence only they need be retained in approximating the
quark-quark scattering matrix that appears as part of the Faddeev equation [27, 87].

Diquarks do not appear in the strong interaction spectrum [40, 54] but the attraction
between quarks in this channel justifies a picture of baryons in which two quarks within
a baryon are always correlated as a colour-3̄ diquark pseudoparticle, and binding is ef-
fected by the iterated exchange of roles between the bystander and diquark-participant
quarks. Here it is important to emphasise strongly that QCD supports nonpointlike di-
quark correlations [92]. Hence models that employ pointlike diquark degrees of freedom
have little connection with QCD.

Numerous properties of the nucleon have been computed using the Faddeev equation
just described. Herein we draw only two examples from comprehensive analyses of
nucleon electromagnetic form factors [27, 34, 93, 94]. To introduce the results, we note
that the nucleon’s electromagnetic current is

Jµ(P′,P) = ie ū(P′)
(

γµF1(Q2)+
1

2M
σµν Qν F2(Q2)

)
u(P) , (43)

where P (P′) is the momentum of the incoming (outgoing) nucleon, Q = P′−P is the
momentum transfer, and F1 and F2 are, respectively, the Dirac and Pauli form factors,
from which one obtains the nucleon’s electric and magnetic (Sachs) form factors

GE(Q2) = F1(Q2)− Q2

4M2 F2(Q2) , GM(Q2) = F1(Q2)+F2(Q2) . (44)

In the left panel of Fig. 6 we depict a ratio of flavour-separated contributions to the
neutron’s Dirac form factor. The predicted Q2-dependence owes to the presence of axial-
vector diquark correlations in the nucleon. It has been found [27] that the neutron’s
singly-represented u-quark is more likely to be struck in association with an axial-
vector diquark correlation than with a scalar, and form factor contributions involving
an axial-vector diquark are soft. On the other hand, the doubly-represented d-quark is
predominantly linked with harder scalar-diquark contributions. NB. When isospin is a
good symmetry, Fn,u

1 /Fn,d
1 = F p,d

1 /F p,u
1 .

In the right panel of Fig. 6 we depict Gn
M computed using the Faddeev equation [27].

Given that it is common practice to compare nucleon form factors with an empirical
dipole, the DSE result is presented in a similar way. Namely, the function 1/(1 +
Q2/m2

D)2 was fitted to the DSE result on 2 ≤ Q2/M2
N < 14. This domain excludes
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FIGURE 6. Left panel. Computed ratio of flavour-separated contributions to neutron’s Dirac form
factor (M =nucleon mass) solid curve. Data, reconstructed from selected neutron electric form factor
data using parametrisations of Ref. [95] when necessary [96]: Ref. [97], up-triangles; Ref. [98], diamonds;
Ref. [99], circles; and Ref. [100], down-triangles. Right panel. Neutron magnetic form factor divided by
dipole fit: long-dashed curve, DSE prediction [27]; solid curve, [95]; open circles, recent CLAS results
[101] (red) and pre-2008 data (green); and black squares, anticipated Q2-coverage and errors for an
experiment at the upgraded JLab [102] – the magnitude of these points is naturally arbitrary at this time
but they were placed to follow a recent fit to now-extant experimental data (short-dashed curve, [103]).

the region whereupon pion cloud effects are significant and maximises coverage of
the domain on which the quark-core calculation is most reliable. The fit produced
mD = 1.05MN cf. the empirical value, memp

D = 0.90MN , which is just 14% smaller.
The DSE predictions in Fig. 6 depend sensitively on the momentum-dependence of

the dressed-quark mass function, which feeds into properties such as the diquarks’ mass
and size. Since in the computation of elastic and transition form factors, the probe’s
input momentum Q is principally shared equally amongst the dressed-quarks, then each
absorbs a momentum fraction Q/3. Thus, to scan the behaviour of the mass function on
the domain p2 ∈ [0.2,1.2]GeV2, upon which its character changes from nonperturbative
to perturbative, one requires Q2 ∈ [2,15]GeV2. The figure illustrates that comparison
and feedback between DSE results and forthcoming precision data on nucleon form
factors can serve as a means by which to empirically chart the momentum evolution
of the dressed-quark mass function, and therefrom the infrared behavior of QCD’s
β -function. In particular, it should enable the unambiguous location of the transition
boundary between the constituent- and current-quark domains that is signalled by the
sharp drop apparent in Fig. 1 and which can likely be related to an infrared inflexion
point in QCD’s running coupling, whose properties are determined by the β -function.

9. EPILOGUE

Dynamical chiral symmetry breaking (DCSB) is a fact in QCD. It is manifest in dressed-
propagators and vertices, and, amongst other things, it is responsible for: the transforma-
tion of the light current-quarks in QCD’s Lagrangian into heavy constituent-like quark’s,
in terms of which order was first brought to the hadron spectrum; the unnaturally small
values of the masses of light-quark pseudoscalar mesons; the unnaturally strong cou-



pling of pseudoscalar mesons to light-quarks – gπ q̄q ≈ 4.3; and the unnaturally strong
coupling of pseudoscalar mesons to the lightest baryons – gπN̄N ≈ 12.8 ≈ 3gπ q̄q.

Herein we have illustrated the dramatic impact that DCSB has upon observables: the
spectrum, Secs. 4 and 5; hadron form factors, Secs. 6 and 8; and parton distribution func-
tions, Sec. 7. A “smoking gun” for DCSB is the behaviour of the dressed-quark mass
function. The momentum dependence manifest in Fig. 1 is an essentially quantum field
theoretical effect. Exposing and elucidating its effects therefore requires a nonpertur-
bative and symmetry-preserving approach, where the latter means preserving Poincaré
covariance, chiral and electromagnetic current-conservation, etc. The Dyson-Schwinger
equations (DSEs) provide such a framework. Experimental and theoretical studies are
underway that will identify observable signals of M(p2) and thereby explain the most
important mass-generating mechanism for visible matter in the Standard Model.

There are many reasons why this is an exciting time in hadron physics. We have
focused on one. Namely, through the DSEs, we are positioned to unify phenomena as
apparently diverse as the: hadron spectrum; hadron elastic and transition form factors,
from small- to large-Q2; and parton distribution functions. The key is an understanding
of both the fundamental origin of nuclear mass and the far-reaching consequences of the
mechanism responsible; namely, DCSB. These things might lead us to an explanation
of confinement, the phenomenon that makes nonperturbative QCD the most interesting
piece of the Standard Model.

ACKNOWLEDGMENTS

We acknowledge valuable input from A. Bashir, I. C. Cloët, J. Gilfoyle, L. X. Gutiérrez-
Guerrero, A. Kızılersü, Y.-X. Liu, S. Riordan and P. C. Tandy. CDR thanks the participat-
ing staff and students in the Department of Physics, University of Sinaloa, Culiacán, for
their assistance and hospitality during the Workshop and the preceding Mini-Courses.
This work was supported by: the National Natural Science Foundation of China, con-
tract no. 10705002; the U. S. Department of Energy, Office of Nuclear Physics, contract
no. DE-AC02-06CH11357; and the U. S. National Science Foundation, under grant no.
PHY-0903991, in conjunction with a CONACyT Mexico-USA collaboration grant.

REFERENCES

1. C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33, 477–575 (1994).
2. C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys. 45, S1-S103 (2000).
3. R. Alkofer and L. von Smekal, Phys. Rept. 353, 281–465 (2001).
4. C. D. Roberts, “Primer for Quantum Field Theory in Hadron Physics,” lecture notes for a

two-semester graduate course in Physics at the University of Rostock, Germany, 104 pages,
http://www.phy.anl.gov/ztfr/LecNotes.pdf

5. P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12, 297–365 (2003).
6. A. Höll, C. D. Roberts and S. V. Wright, “Hadron physics and Dyson-Schwinger equations,” nucl-

th/0601071, contribution to the Proceedings of the 20th Annual Hampton University Graduate
Studies Program (HUGS 2005), Newport News, Virginia, 31 May - 17 Jun 2005, 103 pages.

7. C. S. Fischer, J. Phys. G 32, R253–R291 (2006).
8. C. D. Roberts, M. S. Bhagwat, A. Höll and S. V. Wright, Eur. Phys. J. ST 140, 53–116 (2007).
9. C. D. Roberts, Prog. Part. Nucl. Phys. 61, 50–65 (2008).

http://www.phy.anl.gov/ztfr/LecNotes.pdf


10. R. J. Holt and C. D. Roberts, “Distribution Functions of the Nucleon and Pion in the Valence Region,”
arXiv:1002.4666 [nucl-th], 133 pages.

11. A. S. Kronfeld and C. Quigg, “Resource Letter: Quantum Chromodynamics,” arXiv:1002.5032 [hep-
ph], 39 pages.

12. Allison Lung et al., “JLab at 12 GeV,” http://www.jlab.org/12GeV/unique.html.
13. Japan Proton Accelerator Resarch Complex (J-PARC), Nuclear and Particle Physics Facility,

http://j-parc.jp/jhf-np/index_e.html.
14. Klaus Peters, “The Future of Hadron Physics at European Facilities,” invited talk delivered at the 3rd

Workshop of the APS Topical Group on Hadron Physics (GHP09), Denver Co, 29 April – 1 May,
2009, www.fz-juelich.de/ikp/ghp2009/Talks/talk_peters_klaus.pdf

15. Electron Ion Collider,
http://web.mit.edu/eicc/index.html and https://eic.jlab.org/wiki/index.php/Main_Page.

16. M. S. Bhagwat, I. C. Cloët and C. D. Roberts, “Covariance, Dynamics and Symmetries, and Hadron
Form Factors,” in Exclusive Reactions at High Momentum Transfer, edited by A. Radyushkin and
P. Stoler, World Scientific, Singapore, 2008, pp. 112–120; arXiv:0710.2059 [nucl-th].

17. M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts and P. C. Tandy, Phys. Rev. C 68, 015203 (2003) [9
pages].

18. M. S. Bhagwat and P. C. Tandy, AIP Conf. Proc. 842, 225-227 (2006).
19. P. O. Bowman et al., Phys. Rev. D 71, 054507 (2005) [7 pages].
20. A. Bashir, A. Raya, I. C. Cloët and C. D. Roberts, Phys. Rev. C 78, 055201 (2008) [7 pages].
21. A. Bashir, A. Raya, S. Sanchez-Madrigal and C. D. Roberts, Few Body Syst. 46, 229–237 (2009)
22. A. Bender, D. Blaschke, Yu. L. Kalinovsky and C. D. Roberts, Phys. Rev. Lett. 77, 3724–3727 (1996).
23. C. S. Fischer and J. A. Mueller, Phys. Rev. D 80, 074029 (2009) [14 pages].
24. D. Blaschke, C. D. Roberts and S. M. Schmidt, Phys. Lett. B 425, 232–238 (1998)
25. A. Bender et al., Phys. Lett. B 431, 263–269 (1998).
26. H. Chen et al., Phys. Rev. D 78, 116015 (2008) [11 pages].
27. I. C. Cloët et al., Few Body Syst. 46, 1–36 (2009).
28. M. S. Bhagwat, A. Krassnigg, P. Maris and C. D. Roberts, Eur. Phys. J. A 31, 630–637 (2007).
29. M. S. Bhagwat and P. Maris, Phys. Rev. C 77, 025203 (2008) [12 pages].
30. S. J. Brodsky and H. C. Pauli, Lect. Notes Phys. 396, 51–121 (1991).
31. S. J. Brodsky and R. Shrock, “Condensates in Quantum Chromodynamics and the Cosmological

Constant,” arXiv:0905.1151 [hep-th], 19 pages.
32. S. J. Brodsky, C. D. Roberts, R. Shrock and P. C. Tandy, in progress.
33. G. S. Bali et al., Phys. Rev. D 71, 114513 (2005) [26 pages].
34. L. Chang et al., Chin. Phys. C 33, 1189–1196 (2009).
35. G. Krein, C. D. Roberts and A. G. Williams, Int. J. Mod. Phys. A 7, 5607–5624 (1992).
36. R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, 3rd edition, Addison-Wesley, Reading,

Massachussets, 1980.
37. J. Glimm and A. Jaffee, Quantum Physics. A Functional Point of View, Springer-Verlag, New York,

1981.
38. W. Celmaster and R. J. Gonsalves, Phys. Rev. D 20, 1420–1434 (1979).
39. H. J. Munczek, Phys. Rev. D 52, 4736–4740 (1995).
40. A. Bender, C. D. Roberts and L. Von Smekal, Phys. Lett. B 380, 7–12 (1996).
41. A. Höll, A. Krassnigg and C. D. Roberts, Phys. Rev. C 70, 042203(R) (2004) [5 pages].
42. A. Höll et al., Phys. Rev. C 71, 065204 (2005) [12 pages].
43. M. S. Bhagwat et al., Phys. Rev. C 76, 045203 (2007) [10 pages].
44. L. Chang et al., Phys. Rev. C 81, 032201(R) (2010) [4 pages]
45. L. Chang et al., Phys. Rev. C 79, 035209 (2009) [9 pages].
46. S. Weinberg, Phys. Rev. Lett. 18, 507–509 (1967).
47. L. Chang, Y. x. Liu, W. m. Sun and H. s. Zong, Phys. Lett. B 669, 327–330 (2008).
48. L. Chang and C. D. Roberts, Phys. Rev. Lett. 103, 081601 (2009) [4 pages].
49. J. S. Ball and T. W. Chiu, Phys. Rev. D 22, 2542–2549 (1980).
50. A. Kızılersü and M. R. Pennington, Phys. Rev. D 79, 125020 (2009) [25 pages].
51. E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232–1252 (1951).
52. A. Höll, P. Maris, C. D. Roberts and S. V. Wright, Nucl. Phys. Proc. Suppl. 161, 87–94 (2006)
53. P. Maris and C. D. Roberts, Phys. Rev. C 56, 3369-3383 (1997).

http://www.jlab.org/12GeV/unique.html
http://j-parc.jp/jhf-np/index_e.html
http://www.fz-juelich.de/ikp/ghp2009/Talks/talk_peters_klaus.pdf
http://web.mit.edu/eicc/index.html
https://eic.jlab.org/wiki/index.php/Main_Page


54. M. S. Bhagwat et al., Phys. Rev. C 70, 035205 (2004) [15 pages].
55. P. Watson, W. Cassing and P. C. Tandy, Few Body Syst. 35, 129-153 (2004).
56. P. Maris, AIP Conf. Proc. 892, 65–71 (2007).
57. C. S. Fischer and R. Williams, Phys. Rev. Lett. 103, 122001 (2009) [4 pages].
58. L. Chang and C. D. Roberts, in progress.
59. M. S. Bhagwat et al., Few Body Syst. 40, 209–235 (2007)
60. M. A. Ivanov, J. G. Körner, S. G. Kovalenko and C. D. Roberts, Phys. Rev. D 76, 034018 (2007) [12

pages].
61. J. I. Skullerud et al., JHEP 0304, 047 (2003) [15 pages].
62. S. Bekavac, A. Grozin, D. Seidel and M. Steinhauser, “Light quark mass effects in the chromomag-

netic moment,” arXiv:0906.0130 [hep-ph], 4 pages.
63. P. Maris and P. C. Tandy, Phys. Rev. C 61, 045202 (2000) [11 pages].
64. G. W. Bennett et al., Phys. Rev. D 73, 072003 (2006) [41 pages].
65. P. Maris, C. D. Roberts and P. C. Tandy, Phys. Lett. B 420, 267–273 (1998).
66. J. Volmer et al., Phys. Rev. Lett. 86, 1713–1716 (2001).
67. T. Horn et al., Phys. Rev. Lett. 97, 192001 (2006) [4 pages].
68. V. Tadevosyan et al., Phys. Rev. C 75, 055205 (2007) [9 pages].
69. K. Wijesooriya, P. E. Reimer and R. J. Holt, Phys. Rev. C 72, 065203 (2005) [5 pages].
70. G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 43, 246–249 (1979).
71. A. V. Efremov and A. V. Radyushkin, Phys. Lett. B 94, 245–250 (1980).
72. G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157–2198 (1980).
73. P. Maris and C. D. Roberts, Phys. Rev. C 58 3659–3665 (1998).
74. P. Maris and P. C. Tandy, Phys. Rev. C 62, 055204 (2000) [8 pages].
75. L. X. Gutiérrez-Guerrero, A. Bashir, I. C. Cloët and C. D. Roberts, “Pion form factor from a contact

interaction,” arXiv:1002.1968 [nucl-th], 5 pages.
76. P. O. Bowman et al., Phys. Rev. D 70, 034509 (2004) [4 pages].
77. D. Ebert, T. Feldmann and H. Reinhardt, Phys. Lett. B 388, 154–160 (1996).
78. C. D. Roberts, Nucl. Phys. A 605, 475–495 (1996).
79. Z. F. Ezawa, Nuovo Cim. A 23, 271–290 (1974).
80. G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 35, 1416–1419 (1975).
81. J. Badier et al. Phys. Lett. B 93, 354–356 (1980).
82. J. S. Conway et al., Phys. Rev. D 39, 92–122 (1989).
83. M. B. Hecht, C. D. Roberts and S. M. Schmidt, Phys. Rev. C 63, 025213 (2001) [8 pages].
84. T. T. Nguyen, PhD Thesis, Kent State University, in preparation.
85. T. Shigetani, K. Suzuki and H. Toki, Phys. Lett. B 308, 383–388 (1993).
86. G. Eichmann et al., Phys. Rev. C 77, 042202(R) (2008) [5 pages].
87. G. Eichmann et al., Phys. Rev. C 79, 012202(R) (2009) [5 pages].
88. R. T. Cahill, C. D. Roberts and J. Praschifka, Austral. J. Phys. 42, 129–145 (1989).
89. R. T. Cahill, C. D. Roberts and J. Praschifka, Phys. Rev. D 36, 2804–2812 (1987).
90. C. J. Burden et al., Phys. Rev. C 55, 2649–2664 (1997).
91. P. Maris, Few Body Syst. 32, 41–52 (2002).
92. P. Maris, Few Body Syst. 35, 117–127 (2004).
93. I. C. Cloët et al., Few Body Syst. 42, 91–113 (2008).
94. I. C. Cloët and C. D. Roberts, PoS LC2008, 047 (2008) [10 pages].
95. J. J. Kelly, Phys. Rev. C 70, 068202 (2004) [3 pages].
96. S. Riordan, private communication.
97. D. I. Glazier et al., Eur. Phys. J. A 24, 101–109 (2005).
98. J. Bermuth et al., Phys. Lett. B 564, 199–204 (2003).
99. B. Plaster et al., Phys. Rev. C 73, 025205 (2006) [36 pages].
100. G. Warren et al., Phys. Rev. Lett. 92, 042301 (2004) [5 pages].
101. J. Lachniet et al., Phys. Rev. Lett. 102, 192001 (2009) [6 pages].
102. J. Gilfoyle, private communication.
103. W. M. Alberico, S. M. Bilenky, C. Giunti and K. M. Graczyk, Phys. Rev. C 79, 065204 (2009) [12

pages].


